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Abstract

In the framework of the Small Perturbation Method, we define the spatial and statistical properties of the
scattered field measured by a sensor. The scattering surface is defined as an infinite length random
perturbation. In the intermediate-field zone, the scattered field is represented by a continuum of progressive
plane waves. The sensor is a band-pass filter which keeps only progressive plane waves at angles within
angular band [0,;0,]. If the angular band does not contain the specular angle, the measured field becomes an

ergodic and stationary process.

Résumé

Dans le cadre de la méthode des petites perturbations, nous déterminons les propriétés statistiques et
spatiales du champ diffusé mesuré par un capteur. La surface diffusante est représentée par une perturbation
aléatoire d'extension infinie. En zone de champ intermédiaire, le champ diffusé est défini par un continuum
d'ondes planes progressives. Le capteur est un filtre passe-bande qui ne retient que les ondes planes dont
I'angle de diffusion appartient a la bande passante du capteur [0,;0,]. Si la bande passante ne contient pas

I'angle de la direction spéculaire, le champ mesuré devient un processus stationnaire et ergodique a l'ordre 2.
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1. Introduction

The problem of electromagnetic wave scattering from random surfaces continues to attract research interest
because of its broad applications in optics, radio wave propagation and remote sensing. The three classical
analytical methods commonly used in random rough-surface scattering are the small-perturbation method,
the Kirchhoff method and the small slope approximation [1-3]. The electromagnetic analysis of rough
surfaces with parameters close to the incident wavelength requires a rigorous formalism. Numerous methods
based on Monte Carlo simulations are available for 1D and 2D random rough surfaces [4-8]. Most of
research works focus on the determination of coherent and incoherent intensities. Nevertheless, there are
various applications where the amplitude and phase statistical distributions of the field scattered from rough
surfaces are required [9]. Consequently, it’s important to define these statistical distributions from either an
analytical approach or Monte-Carlo simulations.

In reference [10], we have proposed in the framework of the Small Perturbation Method an analytical study
of the stationarity and the ergodicity of the field scattered by slightly rough random surfaces. Let us make a
brief summary. The surfaces were assumed to be stationary and ergodic with a Gaussian height distribution
and a zero mean value. First, in the intermediate-field zone we have demonstrated that the real part and the
imaginary part of the scattered field are correlated Gaussian stochastic variables with zero mean values and
unequal variances. For an infinite rough surface, we have shown that the scattered field amplitude is given
by a Hoyt law and the phase is not uniformly distributed. We have also shown that under oblique incidence,
the second order statistical moments and the statistical distributions characterizing the scattered field depend
on the observation point. Consequently, the scattered field is not stationary. On the contrary, under normal
incidence, the probability density functions do not depend on the observation point demonstrating that the
scattered field represents a strictly stationary stochastic process. Second, for a given altitude, we have shown
that the spatial variances are not stochastic variables and do not depend on the realization surface. Hence the
scattered field is ergodic to the second order. Under oblique incidence, we have shown that the real part and
the imaginary part of the scattered field are spatially uncorrelated and have equal variances. Therefore, the
spatial distribution of the phase is uniform and the amplitude is given by a Rayleigh law. We have noticed
that the spatial averages are different from the statistical ones. Under normal incidence, the real part and the
imaginary part of the scattered field have different spatial variances and they are spatially correlated.
Therefore, the phase of the scattered field associated with a single profile is not uniformly distributed and
the amplitude distribution is given by a Hoyt law. Contrary to oblique incidence, the spatial and statistical
distributions under normal incidence are interchangeable insofar as the scattered field represents an ergodic
and stationary random process.

In this paper, we extend the study above to the measured scattered field and define the conditions that must
verify the sensor transfer function so that the field is stationary and ergodic. In section 2, we present the
spatial and statistical properties of the rough surfaces and give the scattered fields expressions in the
framework of the Small Perturbation Method. In section 3, we recall the main results presented in reference
[10]. Section 4 relates to the spatial and statistical characteristics of the measured scattered field. We
establish the conditions that must verify the sensor transfer function so that the measured field is stationary

and ergodic.
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2. The scattered field as a random process
2.1 The random surfaces under consideration

We consider a random cylindrical surface illuminated by a monochromatic plane wave under incidence 6, .
W, (x,y) =exp(—jk(sin@,x+cos6,y)) with k=27/A (1)

where A is the wavelength. The incident wave vector lies in the xOy plane. Because of the 1D

configuration of the problem, the incident field y,(x,y) and the scattered field y/(x,y) are represented by

their Oz component only. For E, polarization, ¥, and ¥ represent the Oz component of the electric vector

and, for H, polarization, they represent the Oz component of the magnetic vector.
The surface separates the air from a dielectric material with a real or complex refractive index n. The surface

is defined by equation y = a(x). Hereafter, A(x) represents the random process describing an infinite
ensemble of surfaces and a(x), a single realization of process. Let us assume the surface to be a stationary
random Gaussian process with zero statistical mean value, with a statistical autocorrelation function R ,(x)

that remains invariant of an arbitrary shift [10-11]. Assuming the stationarity of the Gaussian process, the
statistical properties are independent of the absolute origin of the coordinate x. We also assume that the
surface is an ergodic random process to second order with zero spatial mean value, and with the spatial
autocorrelation C,, (x) that is a deterministic function independent on the realization. According to these

assumptions and the Birkhoff theorem, we can identify the spatial autocorrelation function with the

statistical autocorrelation function. Furthermore, we assume that the autocorrelation function has a finite
memory (i.e., R,,(x)vanishes as x — *oo). Hereafter, R 44(@) s the Fourier Transform of R,,(x) and
represents the power spectral density of the random process A(x) .

We emphasize that we distinguish the concepts of ergodicity and stationarity. It is said that a process is
ergordic to the second order if the spatial averaging until the second order are independent of the choice of
the realization. A random process is stationary to the second order (wide-sense stationary) if the statistical
averaging until the second order remains invariant of an arbitrary space shift. As a consequence, a random
process can be ergodic to the second order but not stationary and inversely [11]. Nevertheless, for a

stationary and ergodic process, the statistical averaging and the spatial averaging are interchangeable.

2.2 The scattered field

Let us define the scattered field y(x) as the total field minus the sum of the incident field and the field

reflected by the mean plane of the surface. Above the surface, the scattered field can be represented by a
superposition of a continuous spectrum of outgoing plane waves [3], the so-called Rayleigh integral. More

precisely, beyond a determined height above the surface where evanescent waves can be neglected, the

Rayleigh integral is reduced to the contribution of the propagating waves (|a| <k) only. In the framework of
the first order Small Perturbation Method [4], the scattered field can be expressed by
1 ~ R .
wx,y) =or j‘K(Of) a(a—og)e P dg @)
T

—k
with
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L/2
a(ar) = j a(x)e’ dx 3)

-L/2

and

a=ksind ; B=Vk*-a* ; ay=ksing, )
The time-dependence factor exp(jar), where @ is the angular frequency, is omitted. The function a(e)
may be considered as the Fourier transform of the limited profile a(x) over the interval of finite length L .

For the study of the spatial and statistical properties of the scattered field, the profile will be then extended to

infinity (L — o) . Hereafter, y/(x,y) represents the field scattered by the limited profile a(x) and ¥(x,y),

the spatial stochastic process describing an infinite ensemble of solutions ¥/ (x, y) .

Obviously, 1:1(05) contains the random feature of the random process W¥(x,y) . K(e) is a deterministic

function depending on the polarization, the observation angle, the incidence angle and the refractive index.

Since (3) is a linear transformation of a Gaussian process A(x), the real part ¥, =Re('¥) and the

imaginary part ‘¥; = Im(¥) are also quantities distributed with Gaussian probability density functions.

3. Spatial and statistical properties of the first-order scattered field

3.1 Statistical properties
In reference [10], we have shown that, the statistical mean of the scattered field in first-order is null at any

point M(x,y) and that if L — +co, the real part ¥, and the imaginary part ‘¥; are Gaussian random

1

processes whose the statistical variances (‘Pf) and (‘I‘f} and the statistical covariance (\¥,\V;) are
<W¥? >=V, +Re(V,)
<W¥ >=V,-Re(V,) (5)
1
<VYY >= 3 Im(V,)

where
1 %~ 24
Vo=— [|K@)| Ry (@-a,)da ©)
Ar *,
and

k
v, = [K(@)K Qa, — )R, (a— o) /P g )

—k
Expressions (5) to (7) show that the real part and the imaginary part are correlated, (\¥,'¥;) #0, with
unequal variances (‘I‘,2 ) ;t(‘l‘iz). These statistical parameters depend on the observation point except at
normal incidence ( ¢, = 0) where they depend on the altitude y only. As a consequence, the scattered field is

not stationary to the second order.
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Since real and imaginary parts of the scattered field are Gaussian centered processes, the probability density

functions of the amplitude |‘I‘| and the probability law of the phase ® are defined as follows

m? o-%+o-l.2
2 2 232 2| T, 22 . 2
m m o -0 4 40f0” 1-p
Py|(m)= =Tl 5 ( —~ 4’) + 2’;2 e i (®)
ara,-\/l—p 41-p7) | o,0; 0, 0;
1 0,0; l—p2
Po(P)=— ©)

2 2 : 2 .2
27 o7 cos” §— po,0;sin2¢+ o sin” ¢

where

o = (P s 0 =(¥D) : p=(¥.¥) /00 (10)

p 1is the correlation coefficient and I, is the zeroth-order modified Bessel function [13]. The scattered field

amplitude is given by a Hoyt law (8) and the phase is not uniformly distributed (9). From these expressions,

we obtain the uniform law and the Rayleigh law if 0,=0; and p=0. We note that under oblique

incidence, the variances 0',2 and O'i2 , the correlation coefficient p and the probability laws depend on the

coordinate x . On the contrary, under normal incidence, the probability density functions do not depend on

the coordinate x and as a consequence, the scattered field represents a strictly stationary stochastic process.

3.2 Spatial properties

We consider the field y(x, y) scattered by a single realization a(x). In reference [10], we have shown that

the spatial mean of the scattered field along a horizontal line is zero and that the spatial variances y/,z , 1,//,-2

and the spatial covariance ,/; associated with real and imaginary parts of the scattered field are given as

follows

W =V, +Re(V,)8

sz =V _Re(Vz)Soc,oco (11)

oL,

— 1
Y.V, = E Im(VZ)S(x,(xo
where 505,0,0 represents the Kronecker symbol. Terms 7} and V, are given by Equations (6) and (7). Since

the spatial variances do not depend on the realization, the scattered field is an ergodic centered process to the
second order. Under oblique incidence, the spatial variances are equal and independent on the line altitude.

The real part y, and the imaginary part y; are spatially uncorrelated. Under normal incidence, the spatial
variances are different. The real part i, and the imaginary part y; are spatially correlated. Under normal

incidence, the scattered field is an ergodic and stationary random process. For this reason, contrary to
oblique incidence, the spatial and statistical variances under normal incidence are interchangeable.
We can also define the spatial distributions associated with the scattering field using (8) and (9) with spatial

averages instead of statistical averages. Under oblique incidence, the real part and the imaginary part of the
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scattering field are spatially uncorrelated and have the same spatial variance. Therefore, the phase is
spatially uniformly distributed and the amplitude is given by a Rayleigh law. Under normal incidence, the
real part and the imaginary part have different spatial variances and are spatially correlated. The phase of the

scattered field w(x, y) associated with the single profile a(x) is not uniformly distributed and the amplitude

distribution is given by a Hoyt law. Contrary to oblique incidence, the spatial and statistical distributions

under normal incidence are interchangeable.

4. Spatial and statistical properties of the measured scattered field

The measured scattered field y,,(x, ) is given by the following expression

a .
v, (x,y)= 2i JZK(O() F(a@)a(a—ay)e /PO 4o (12)

4
where F () represents the sensor transfer function. The sensor is a band-pass filter which keeps only

progressive plane waves of the scattered field within the angular band [6,;6,]:

Flo)#0if o <a<a, o)
F(o) =0 elsewhere
with
o, =ksin6, and o, =ksin6, (14)
We can derive the statistical and spatial properties of the measured scattered field using relations (5) to (11)

with K (a)f? () instead of K (o) . The measured field is an ergodic centered process and represents a

stationary process under normal incidence only. The measured field becomes a stationary process if the
second order moments are independent on the X coordinate. From Eqs (6) to (8), we can deduce that the

statistical variances do not depend on x if ¥, =0. This case occurs if

F(Zao—a):o for o, <a<a, (15)
We deduce that the measured field is stationary if

o, <o, <, or o <, <, (16)
If condition (16) is proved, the measured field represents an ergodic and stationary centered Gaussian

process. In this case, all the variances are equal and independant on the coordinate y

W syt = k‘l% "R
ri o= Yo __J. (@) RAA(a_aO)da a7)
ar °,

Moreover, the real part and the imaginary part of the measured field are statistically and spatially

uncorrelated
py, =YY >=0 (18)

Under condition (16), the statistical and spatial distributions are interchangeable. Since the real part and the
imaginary part have the same variances and since they are uncorrelated, the phase is uniformly distributed

and the amplitude obeys to a Rayleigh law.
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5. Conclusion
In reference [10], we have shown that the field scattered by slightly rough random surfaces illuminated

under oblique incidence 6, is ergodic but not stationary. In this paper, we have defined the condition that

must verify the sensor transfer function so that the measured scattered field in the intermediate-field zone
becomes an ergodic and stationary process. The sensor is a band-pass filter which keeps only progressive

plane waves of the scattered field within angular band [6,;6,]. The measured scattered field becomes an

ergodic and stationary process if the angular band does not contain the specular angle. With more complex

manipulations, this analytical can be extended to the two-dimensional case.

References

[1] Tsang, L., Kong, J.A. and Ding, K.H., 2001, Scattering of Electromagnetic Waves: Theories and
Apllications (New York: Wiley-Interscience).

[2] Beckmann, P. and Spizzichino, A., 1963, The Scattering of Electromagnetic Waves from Rough Surfaces
(Oxford: Pergamon).

[3] Voronovich, G., 1994, Wave Scattering from Rough Surfaces (Berlin: Springer).

[4] Ogilvy, J.A., 1991, Theory of Wave Scattering from Random Rough Surfaces (Bristol, Adam Hilger).

[5] Tsang, L., Kong, J.A., Ding, K.H. and Ao, C.O., 2001, Scattering of electromagnetic waves — Numerical
simulations (New-york: Wiley-Interscience).

[6] Baudier, C., Dusséaux, R., Edee, K.S. and Granet, G., 2004, Scattering of a plane wave by one-
dimensional dielectric random surfaces — Study with the curvilinear coordinate method. Waves Random
Media, 14, 61-74.

[7] Ait Braham, K., Dusséaux, R. and Granet G., 2008, Scattering of electromagnetic waves from two-
dimensional perfectly conducting random rough surfaces — Study with the curvilinear coordinate method.
Waves Random Complex Media, 18, 255 - 274.

[8] Dusséaux, R., Ait Braham, K., and Granet G., 2008, Implementation and validation of the curvilinear
coordinate method for the scattering of electromagnetic waves from two-dimensional dielectric random
rough surfaces, Waves Random Complex Media, 18, 551-570.

[9] Jakeman, E. and Ridley, K.D., 2006, Modeling fluctuations in scattered waves (New-York, Taylor and
Francis).

[10] De Oliveira, R, Dusséaux, R. and Afifi, S., 2009, Analytical study of stationarity and ergodicity of a
field scattered by a random slightly rough surface, Waves in Random and Complex Media , in submission.
[11] Charbit, M., 1990, Eléments de théorie du signal : Les signaux aléatoires (Ellipses).

[12] Kim, M-J, Berenyi H.M., Burge, R.E. and Tajbakhsh, S., 1995, Region of validity of perturbation
theory for dielectrics and finite conductors. Waves Random Media, 5, 305-327.

[13] Dusséaux, R. and De Oliveira, R., 2007, Effect of the illumination length on the statistical distribution
of the field scattered from one-dimensional random rough surfaces: analytical formulae derived from the

small perturbation method, Waves in Random and Complex Media 17, 305-320.

309



