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Abstract 

Emerging applications such as Smart grids and Internet of Things are being considered as an integral part of 5G cellular 

communication standard. To bring these applications to life, lightweight wireless sensor nodes (WSNs) with ability to 

sustain in remote locations with low maintenance cost are desired. Radio frequency energy harvesting (RFEH) technique 

allows WSNs to harvest ambient RF energy transmitted by sources such as base stations, TV tower, WiFi access points, 

dedicated RF energy sources etc. thereby making them self-sustainable. In this paper, a new decision making policy 

(DMP) using Bayesian Upper Confidence Bound algorithm for efficient RFEH at WSNs is proposed. The proposed DMP 

offers WSNs an intelligent way to characterize frequency bands based on their RF potential and select optimum 

frequency band. Simulations results show that the proposed DMP leads 13% to 47% improvement in average RF energy 

harvested in a given time over other DMPs. Furthermore, 13% to 71% reduction in subband switching cost and hence, 

power consumption makes the proposed DMP suitable for the design of lightweight and self-sustainable WSNs. 

 

Introduction 

Upcoming 5G cellular communication standard is expected to support infrastructure for various applications such as 

Smart grids, Internet of Things, Environmental sensing etc [1-3]. In order to bring these applications to life, research 

efforts are mainly focused on: 1) Wireless sensor nodes (WSNs) capable of sensing the desired information and 

communicating it to the appropriate location, and 2) Big data algorithms to analyze the received information from all 

WSNs [2,3]. It is expected that there will be at least 50 billion WSNs deployed worldwide by 2020 [2,3]. Though 

deployment of such a huge number of WSNs, even at remote locations, is not a challenging task, attention must be paid 

towards making these battery-operated WSNs self-sustainable with low maintenance cost, environment friendly and 

light-weight [2,3]. One promising solution is to design WSNs capable of harvesting energy from the environment to 

improve battery life or even make them battery free and hence, environmental friendly. The design of such lightweight 

WSNs with energy harvesting capability is a challenging research problem. 

 

Various energy harvesting approaches such as solar, vibrational, thermal, RF etc. have been investigated for WSNs [4-6]. 

Among these approaches, RFEH is the recent but promising one as it facilitates the conversion of received RF energy 

from ambient RF sources such as base stations, TV towers, access points, dedicated RF sources etc. into electricity that 

can be stored and used later for data transmission [4-6]. This is exciting, because in addition of enabling data 

communication at farther distances, broadcast nature of RF signals also make them valuable for extending the battery life 

of WSNs. From architecture perspective, RFEH circuits have the advantages of easier integration with RF front-end of 

WSN terminal thereby making use of same antenna for RFEH as well as data transmission tasks [5,6]. Experimentally, it 

has been demonstrated that energy in the order of microwatts can be harvested from RFEH circuits [5,6]. In near future, 

further improvement in harvested RF energy can be expected which will make RFEH feasible for WSNs with resource 

intensive operations in these emerging applications [1-6]. 

 

WSNs with RFEH capability need intelligence to characterize various RF sources (i.e., frequency subbands) based on 

their RF potential [7]. The cooperative approach for characterization of RF sources, where WSN or central controller 

share information about RF potential of various subbands with other WSNs, is not efficient. This is because, RF energy in 

a given subband varies significantly with the location and distance from the RF source [4-6]. Hence, subband which is 

optimal for one WSN may not be the same for other WSN unless they are located very close to each other. Furthermore, 

WSNs incur penalty when they switch from one frequency subband to another [7]. This penalty is in terms of dynamic 
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power consumption and time for RFEH due to the reconfiguration overhead. The design of decision making policy 

(DMP) for WSNs to accurately characterize frequency subbands and choose optimum subband without compromising on 

switching cost is the focus of the work presented in this paper. 

 

In this paper, a new DMP is proposed which enables WSNs to accurately estimate the RF potential of each frequency 

subband and choose optimal subband for RFEH. The proposed DMP is designed using Bayesian Multi-Armed Bandit 

(MAB) algorithm, called Bayesian Upper Confidence Bound (BUCB) algorithm [8]. Simulations results show that the 

proposed DMP leads 13% to 47% improvement in average RF energy harvested in a given time over other DMPs. 

Furthermore, 13% to 71% reduction in subband switching cost and hence, power consumption makes the proposed DMP 

suitable for the design of lightweight and self-sustainable WSNs. 

 

The paper is organized as follows. In Section 1, the assumed model of the WSN network is discussed. The proposed 

DMP is presented in Section 2. The simulation results are given in Section 3 and Section 4 concludes the paper. 

 

1. Network Model 
 

Consider N uniform bandwidth frequency bands of the wideband electromagnetic spectrum to which RFEH circuit can be 

matched to harvest RF energy. The bandwidth of analog front-end of WSNs is assumed to be equal to the bandwidth of 

these bands and it is denoted by 𝐵𝑎𝑓𝑒 . Consider the normalized RF power of 𝑛𝑡ℎ  frequency band be 𝜇𝑛 where n ∈

{1, 2,..,N}. Average RF power of any subband, 𝜇𝑛 ∀𝑛, is assumed to evolve as an i.i.d. random process with variance 𝜎𝑛
2, 

stationary and unknown to WSNs. In each time slot, WSN chooses one of the frequency band and performs RFEH after 

tuning its antenna and other hardware units to the chosen frequency band. Then, 𝑘𝑡ℎ time slot consists of two sub-slots as 

given below 

𝑡𝑘 = ∆𝑡 = 𝑡1𝑘 + 𝑡2𝑘                                                                                            (1) 

 

where ∆𝑡 is duration of time slot, 𝑡1𝑘 is the time required for subband selection, hardware and protocol reconfiguration, 

antenna adjustments etc. and 𝑡2𝑘 is the time available for RFEH over the chosen subband. Let 𝑃𝑘
∗ be the total RF power 

harvested over the bandwidth 𝐵𝑎𝑓𝑒 in time slot 𝑘 using genie-aided DMP (i.e. DMP where WSN knows which subband is 

optimum for RFEH and hence, chooses the optimum subband in each time slot). Similarly, let 𝑃𝑘  be the total RF power 

harvested in time slot 𝑘 using any other DMP. Then, total loss in terms of average harvested RF energy, 𝑈𝐾 , up to 𝐾 time 

slots is given by, 

 

𝑈𝐾 = 𝑃𝐾
∗ − 𝑃𝐾 = ∑ 𝔼[𝑃𝑘

∗ − 𝑃𝑘]                    

𝐾

𝑘=1

 

 

                                    = 𝐾 ∙ 𝜇∗ ∙ 𝜂(𝜇∗) ∙ ∆𝑡 − ∑ 𝔼[𝜇𝑛𝑘
∙ 𝜂(𝜇𝑛𝑘

) ∙ (∆𝑡 − 𝑡1𝑘)] 

𝐾

𝑘=1

                                    (2) 

 

where 𝜇∗ is the average RF power of optimum subband, 𝑛𝑘 is the subband chosen by WSN in the 𝑘𝑡ℎ time slot, 𝜂(𝑥) is 
the efficiency of RFEH circuit for input RF power of 𝑥 and 𝔼 is an expectation operator. For any DMP, 𝑈𝑘  should be as 

small as possible. The subband switching cost (SSC) of the DMP is given by Eq. 3 and it should also be as minimum as 

possible. 

 

𝑆𝑆𝐶 = ∑ 𝔼[1{𝑛𝑘≠𝑛𝑘−1}]                                                                                               (3)

𝐾

𝑘=2

 

 

where an indicator function: 1{𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛} = 1 if logical expression=true else 0. 

 

2. Proposed Decision Making Policy 

 
In this section, proposed DMP is presented which enables WSNs to characterize different frequency bands based on their 

RF energy potential. The framework of the proposed DMP is shown in Fig. 1. The proposed DMP involves two decision 

making tasks: 1) To decide whether to continue RFEH in the frequency band same as that chosen in the previous time 

slot (𝑠𝑘𝑖𝑝_𝐷𝑀 = 1), 2) If not (i.e., 𝑠𝑘𝑖𝑝_𝐷𝑀 = 0), identify another frequency band using BUCB algorithm. Based on the 

feedback from RFEH circuit about the amount of RF energy harvested, the parameters of BUCB algorithms are updated 

at the end of time slot.  
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2.1. Task 1: To decide the value of 𝒔𝒌𝒊𝒑_𝑫𝑴 

The benefits of skipping decision making (i.e., 𝑠𝑘𝑖𝑝_𝐷𝑀 = 1) are increase in RFEH duration and no need of subband 

switching. When 𝑠𝑘𝑖𝑝_𝐷𝑀 = 1, the RFEH duration is 𝑡1𝑘 units longer than the same when 𝑠𝑘𝑖𝑝_𝐷𝑀 = 0. Higher 

duration means higher total harvested RF energy. The subband switching incurs penalty in terms of dynamic power 

consumption which can be avoided when 𝑠𝑘𝑖𝑝_𝐷𝑀 = 1. However, such decision (i.e., 𝑠𝑘𝑖𝑝_𝐷𝑀 = 1) needs to be taken 

only when all subbands are characterized with sufficient accuracy. Otherwise, it might lead to the higher regret due to the 

consecutive selection of sub-optimum subbands. This is because, 𝑡1𝑘 is usually much smaller than 𝑡2𝑘 which means that 

harvested RF energy when 𝑠𝑘𝑖𝑝_𝐷𝑀 = 1 might be lower than the harvested energy when 𝑠𝑘𝑖𝑝_𝐷𝑀 = 0 if subbands are 

not chosen properly. In the proposed DMP, such decision making is based on Chebyshev inequality which is given by 

 

𝑃{|𝜇𝑛 − �̅�𝑛| > 𝜖} ≤
𝜎𝑛

2

𝑇𝑛,𝑘∙𝜖2                                                                        (4) 

 

In Eq. 4, 𝑇𝑛,𝑘  is the number of times the 𝑛𝑡ℎ subband is chosen by WSN up to time slot, 𝑘. Let 𝑋𝑛,𝑘 be the total 

normalized RF energy harvested over 𝑇𝑛,𝑘 time slots during which 𝑛𝑡ℎ subband is chosen by WSN. Then, estimated RF 

potential of the subband, �̅�𝑛, is given by 

 

�̅�𝑛 =
𝑋𝑛,𝑘

𝑇𝑛,𝑘

                                                                                                (5) 

 

Eq. 4 indicates that if subband is chosen sufficient number of times, then its estimated RF potential (i.e., �̅�𝑛) and actual 

RF potential (i.e., 𝜇𝑛) are closed to each other. Based on this observation, it can also be concluded that the change in the 

value of �̅�𝑛 from one time slot to another decreases as 𝑇𝑛,𝑘  increases. In the proposed DMP, in any 𝑘𝑡ℎ time slot, if the 

difference between �̅�𝑛𝑘−1
 and �̅�𝑛𝑘

 is sufficiently small and estimated RF potential of the subband (i.e., �̅�𝑛𝑘
) is highest 

among all subbands, then 𝑠𝑘𝑖𝑝_𝐷𝑀 = 1. If 𝑠𝑘𝑖𝑝_𝐷𝑀  is changed from 0 to 1 in the 𝑘𝑡ℎ time slot, it remains equal to 1 for 

subsequent log(𝑘) number of time slots. Then, in the subsequent (log(𝑘) + 1)𝑡ℎ time slot, subband selection is governed 

by BUCB algorithm which is discussed in the next section. 

 

2.2. Task 2: Subband Characterization and Selection Using BUCB Algorithm 

The second task of the proposed DMP is to select the appropriate subband in each time slot so that the regret, 𝑈𝐾 , given 

by Eq. 2, is as minimum as possible. To select optimum subband, DMP needs to characterize all subbands accurately. In 

the proposed DMP, BUCB algorithm is used to characterize and select appropriate subband. BUCB algorithm belongs to 

the class of multi-armed bandit family which includes other algorithms such as UCB, KL-UCB where KL stands for 

Kullback-Leibler etc [7-9]. All these algorithms are based on exploitation-exploration trade-off where exploitation refers 

to the selection of optimum subband (i.e. greedy approach) in each time slot while exploration refers to the selection of 

subbands which has been chosen fewer number of times in the past in order to characterize them well [8]. The above 

algorithms are optimal which means that they satisfy following condition [8] 

 

Chose another subband using 

BUCB algorithm 

Perform RFEH over the chosen 

subband for the rest of time slot

skip_DM==1?
Yes No

k=0 k=1 k=10000k=2

RFEH

Decision 

Making

Time slot k

End

Update BUCB parameters

Perform full slot RFEH over 

the same subband

Fig. 1. Proposed decision kaking policy framework. 
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lim inf
𝑘→∞

𝔼[𝑇𝑛,𝑘]

ln 𝑘
≥

1

Κ(𝜇𝑛 , 𝜇∗)
, ∀𝑛                                                                             (6) 

 

where 𝐾(𝑝, 𝑞) denotes the Kullback-Leibler divergence factor. Algorithms which satisfies Eq. 6 offer good trade-off 

between exploration and exploitation.   

 

The proposed DMP is designed using BUCB algorithm due to its advantages such as lower regret, lower switching cost 

and lower computational complexity over other algorithms [8,9]. In the proposed DMP, all subband are selected once in 

the beginning. Then, at subsequent time slots, BUCB algorithm calculates quality index, 𝐺(𝑛, 𝑘), for each subband which 

is given by [8], 

 

𝐺(𝑛, 𝑘) = 𝑄 {1 −
1

𝑘
; 𝐵𝑒𝑡𝑎[𝑋𝑛,𝑘 + 1, 𝑇𝑛,𝑘 − 𝑋𝑛,𝑘 + 1]}                                                      (7) 

 

Since higher the quality index, 𝐺(𝑛, 𝑘), higher is the RF potential of the subband, the subband having highest quality 

index is selected in each time slot. Based on the feedback from RFEH circuit, 𝑋𝑛,𝑘 is updated at the end of time slot. For 

example, if �̅�𝑘  is the normalized RF power harvested from the chosen subband in the 𝑘𝑡ℎ time slot, then 𝑋𝑛,𝑘 = �̅�𝑘. When 

𝑠𝑘𝑖𝑝_𝐷𝑀 = 1, BUCB algorithm remains idle but 𝑋𝑛,𝑘 is still updated at the end of time slot. In the next section, 

simulation results are presented. 

 

3. Simulation Results 

 
In this section, simulation results are presented to evaluate and compare the performance of the proposed DMP with other 

DMPs. Other DMPs include DMP employing randomization approach, UCB algorithm and BUCB algorithm for subband 

selection. WSN consists of RFEH circuit which can harvest energy from any one of the 9 subbands. The RF potential of 

these subbands is governed by distribution, 𝜇. Here, we consider four different distributions of 𝜇 which are given by 

 

Case 1: Random distribution 

Case 2: {0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90} 

Case 3: {0.05, 0.10, 0.35, 0.55, 0.70, 0.75, 0.80, 0.85, 0.90} 

Case 4: {0.05, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.50, 0.55} 

The Case 1 considers random distribution where RF energy is randomly allocated to subbands in each time slots and 

hence, it is difficult to accurately characterize subbands. The efficiency of RFEH circuit for a given incident RF power 

are obtained from powercast RFEH circuit specifications [6]. Note that efficiency of RFEH increases with the increase in 

incident RF power but the relationship is not linear. Also, minimum normalized RF energy is 0.2. This means that if the 

incident normalized RF energy is below 0.2, RFEH circuit fails to harvest any RF energy in that time slot. Each 

numerical result reported hereafter is the average of values obtained over 25 independent experiments and each 

experiment consider a time horizon of 10000 iterations.  

In Fig. 2, average RF energy harvested in percentage with respect to genie-aided DMP are shown for Case 1, Case 2, 

Case 3 and Case 4. It can be observed that all DMPs harvests almost equal energy in Case 1 due to difficulty in subband 

characterization because of random distribution of RF energy. The harvested RF energy is highest in Case 3 due to better 

RF potentials of subbands. Similarly, harvested RF energy is lowest in Case 4 when compared to Case 2 and Case 3. 

Among all DMPs, random selection based DMP leads to poor performance in all the cases. DMP using BUCB is superior 

to DMP using UCB while the proposed DMP with intelligent choice of skipping decision making in specific time slots 

leads to further improvement in harvested RF energy. Numerically, the proposed DMP offers 47%, 15% and 13% 

improvement in average harvested RF energy over random selection based DMP, DMP using UCB and DMP using 

BUCB, respectively.  

Next, various DMPs are compared in terms of the average SSC. As shown in Fig. 3, SSC of the proposed DMP is lowest 

while that of random selection based DMP is highest. Even in Case 1, the proposed DMP offers lower SSC over other 

DMPs. Numerically, proposed DMP leads to 71%, 49%, 13% reduction in average SSC over random selection based 

DMP, DMP using UCB and DMP using BUCB, respectively.  

To summarize, simulation results show that the random selection based DMP is not suitable for RFEH enabled WSNs 

even when RF potential of subbands are randomly distributed. Among other DMPs, BUCB based DMPs offer superior 

performance over UCB based DMP in terms of average harvested RF energy and average SSC. Note that SSC of UCB is 

highest in Case 1. The proposed DMP with smart decision making approach leads to significant improvement in 

harvested RF energy as well as SSC when compared to BUCB based DMP. Thus, proposed DMP is superior and energy-

efficient. 
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Fig. 2. Average harvested RF power using different DMPs in % with respect to the power harvested using Genie-aided 

DMP for four different cases of distributions, 𝜇. 

 

 

Fig. 3. Average SSC of various DMPs for four different cases of distributions, 𝜇. 

 

4. Conclusions 
 

In this paper, a new decision making policy (DMP) using Bayesian Upper Confidence Bound algorithm for efficient 

RFEH at WSNs is proposed. The proposed DMP offers WSNs an intelligent way to characterize frequency bands based 

on their RF potential and select optimum frequency band. Simulations results show that the proposed DMP leads 13% to 

47% improvement in average RF energy harvested in a given time over other DMPs. Furthermore, 13% to 71% reduction 

in subband switching cost and hence, power consumption makes the proposed DMP suitable for the design of lightweight 

and self-sustainable WSNs. Future works include validation of functionality of various DMPs using real radio signals and 

RFEH circuits. 

 

Acknowledgements 
The authors would like to thank Department of Science and Technology (DST), Government of India for INSPIRE 

fellowship in support of this work. 

 

Citations 

 
[1] J. Thompson, X. Ge, H. Wu, R. Irmer, H. Jiang, G. Fettweis and S. Alamouti, “5G Wireless Communication Systems: 

Prospects and Challenges”, IEEE Communication Magazine, vol. 52, no. 2, pp. 62-64, Feb. 2014. 

[2] M. Alsheikh, D. Hong, D. Niyato, H. Tan and S. Lin, “Markov Decision Processes with Applications in Wireless 

Sensor Networks: A Survey”, IEEE Communications Surveys & Tutorials, vol. 3, no. 4, pp. 1239-1267, Aug. 2015. 

[3] M. Alsheikh, S. Lin, D. Niyato and H. Tan, “Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, 

and Applications”, IEEE Communications Surveys & Tutorials, vol. 16, no. 4, pp. 1996-2018, Nov. 2014. 

Journées scientifiques 15/16 mars 2016 URSI-France

117



[4] S. Ulukus, A. Yener, E. Erkip, O. Simeone, M. Zorzi, P. Grover and K. Huang, “Energy Harvesting Wireless 

Communications: A Review of Recent Advances,” IEEE Journal on Selected Areas in Communications, vol. 33, no. 

3, pp. 360–381, Mar. 2015. 

[5] Drayson Technologies, “RF Energy Harvesting for the Low Energy Internet of Things, ” white paper, 2015. 

[6] http://www.powercastco.com/documentation/ 

[7] S. J. Darak, H. Zhang, J. Palicot and C. Moy, “An Efficient Policy for D2D Communications and Energy Harvesting 

in Cognitive Radios: Go Bayesian!,” in 23th European Signal Processing Conference (EUSIPCO), pp. 1236–1240, 

Nice, France, Aug. 2015. 

[8] E. Kaufmann, O. Cappe and A. Garivier, “On Bayesian Upper Confidence Bounds for Bandit Problems,” in 15th Int. 

Conf. on Artificial Intelligence and Statistics, pp. 592–600, Canary Islands, Apr. 2012. 

[9] S. J. Darak, A. Nafkha, C. Moy and J. Palicot, “Is Bayesian Multi-armed Bandit Algorithm Superior?: Proof-of-

Concept for Opportunistic Spectrum Access in Decentralized Networks, accepted in 11th International Conference on 

Cognitive Radio Oriented Wireless Networks (CROWNCOM), Grenoble, France, May 2016. 

Journées scientifiques 15/16 mars 2016URSI-France

118


