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1 Introduction

Incorporation of the wavelet transform into classical inversion methods is attracting much attention due to its multires-
olution capability and good compressive property. Several inversion methods such as the Born iterative method (BIM)
[1], the contrast source inversion (CSI) method [2], and the subspace-based optimization method (SOM) [3] have already
been investigated in the wavelet domain [6] [4] [5]. Our work aims at developing CSI method in the wavelet domain, at
the same time, incorporating the sparsity into this framework due to the great potential of sparsity to effectively tackle the
inverse problem and its robustness to noise.

2 Problem statement

The scenario considered is a time-harmonic two-dimensional (2D) electromagnetic scattering problem for transverse
magnetic (TM) polarization. The object is located in the domain of interest D. Ns sources and Nr receivers are located
on a line of observation S. The scattered electric fieldEdiff(rr, rs) collected by a receiver placed at rr and associated with
the source placed at rs satisfies the integral equation Ediff(rr, rs) =

∫
D
G(rr, r

′)J(r′, rs)dr
′, with G(r, r′) the Green’s

function and J(r, rs) = χ(r)E(r, rs) the equivalent current. The contrast function χ(r) is defined as k2(r)− k2B , where
k2(r) = ω2ε0εr(r)µ0 + iωµ0σ(r), k2B = ω2ε0µ0. ε0 and µ0 are the permittivity and permeability of air, respectively.
εr(r) and σ(r) are the relative permittivity and conductivity of the medium respectively, as r ∈ D is an observation point.
ω is the angular frequency. Einc(r, rs) is the incident electric field, and the total electric field E(r, rs) can be obtained
according to E(r, rs) = Einc(r, rs) +

∫
D
G(r, r′)J(r′, rs)dr

′ (∀r ∈ D).
Using the method of moments, the discretized version of the previous equations stands as Ediff

i (r) = GSJi(r) {i =
1, . . . , Ns, r ∈ S} and Ei(r) = Einc

r (r) + GDJi(r) {i = 1, . . . , Ns, r ∈ D}. GS is the external mapping operator
and GD is the internal mapping operator. The inverse scattering problem is to retrieve χ(r) from Ediff(rr, rs), which is
nonlinear and ill-posed.

3 Wavelet-domain contrast source inversion method

Inspired from [4], we can apply the CSI method in the wavelet domain. First, let us define the wavelet transform as W

and its inverse as W∗. ‖ · ‖2Dw and ‖ · ‖2Sw indicate the norms on L2(S) and L2(D) in the wavelet domain. By combining
previous equations, the data equation and the state equation are defined as fi = GS(W

∗γi) and γi = W{(W∗β)Einc
i }+

W{(W∗β)GD(W∗γi)}, respectively, where γi = WJi, β = Wχ. The cost function in the wavelet domain is given by

F (γ1, . . . γNs
, β) =

∑Ns

i=1 ‖fi −GS(W∗γi)‖2S∑Ns

i=1 ‖fi‖2S
+

∑Ns

i=1 ‖W{(W∗β)Einc
i }+W{(W∗β)GD(W∗γi)} − γi‖2Dw∑Ns

i=1 ‖W{(W∗β)Einc
i }‖2Dw

(1)

The cost function consists of the normalized error of the data equation and state equation. It is minimized by alterna-
tively updating χ and Ji in the wavelet domain (β, γi) using the conjugate-gradient (CG) method. The wavelet transform
produces two sets of coefficients: approximation coefficients and detail coefficients. The first step of our approach is to
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update only approximation coefficients to obtain a preliminary result. Then, we can determine the positions of significant
wavelet coefficients based on this result, by employing the parent-child relationship [7] between approximation and detail
wavelet coefficients with the threshold value T1. The second step is to launch again the algorithm to update the signif-
icant detail coefficients and to get a finer result with the previous result being the initial model. At the same time, the
soft-thresholding is applied with the threshold value T2.

4 Numerical results

In the numerical simulations, the “Austria” profile which contains two disks and one ring is used. The true value of the
relative permittivity of the object is 2 and it is 1 for the embedding medium. The region of interest D is l = 1.33λ sided
and the S is of radius r = 2.5λ, where λ is the wavelength in air. The frequency is 500MHz. Gaussian noise with SNR
of 20 dB is added to the data. A positivity constraint is applied. The wavelet basis used in the simulations is the Haar
wavelet, and the level of wavelet decomposition J = 1. The threshold value T1 is the 85th percentile of approximation
coefficients, and T2 is set to the minimum value of the significant approximation coefficients. In the following, three

20 40 60

10

20

30

40

50

60

0

0.5

1

1.5

2

2.5

3

(a) Ground truth
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(b) CSI
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(c) W-CSI
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(d) W-CSI-ST

Figure 1: Real (left) and imaginary (right) parts of true model (a), and reconstructed model using CSI (b) and wavelet-domain CSI
without (c) and with sparsity constraint (d) for Ns = 6 and Nr = 18.

methods are discussed including spatial-domain CSI, wavelet-domain CSI using all coefficients and wavelet-domain CSI
using only significant wavelet coefficients with the soft-thresholding step respectively named as CSI, W-CSI and W-CSI-
ST. As an illustration, a comparison of the final results for Ns = 6 and Nr = 18 is shown in Fig. 1. As expected, W-CSI-
ST (Fig. 1d) provides a better and smoother result than CSI (Fig. 1b) and W-CSI (Fig. 1c) when using a small number
of sources and receivers at a CPU time cost of 150 s for K = 500 compared to 22 s and 75 s respectively. By evaluating
the relative error err = ‖χχχreconstructed−χχχtrue‖2

‖χχχtrue‖2 , the proposed method is proven to ensure better quality of reconstruction when
Ns and Nr are small but about the same quality (at the price of increasing CPU time) when Ns and Nr increase. The
machine that has been used has a processor such as: Intel Core i9 CPU@2.9 GHz.

5 Conclusion and future work

A new approach has been proposed in order to solve the inverse scattering problem with strong non-linearity by enforcing
sparsity through the soft thresholding in the wavelet domain, which improves the quality of reconstruction. Future research
will be on the accurate determination of hyperparameters as well as extension to far more complicated object profiles.
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