

Comité National Français de Radioélectricité Scientifique Section française de l' Union Radio Scientifique Internationale Siège social : Académie des Sciences, Quai de Conti – Paris

> Journées scientifiques du CNFRS " Nanosciences et radioélectricité"

> > Paris, les 20 et 21 mars 2007

Contribution des faisceaux d'ions à l'élaboration de dispositifs pour l'électronique souple

Rémi Antony, Bruno Lucas, André Moliton, Bernard Ratier

XLIM, UMR 6172, Département MINACOM 123 Avenue Albert Thomas

87060 LIMOGES

Plan de l'exposé

-Interaction ion-matière

-L'utilisation des faisceaux d'ions sur les dispositifs organiques

-Élaboration d'ITO par pulvérisation ionique -sur verre et sur substrats plastiques -application à la réalisation de dispositifs sur substrats souples OLEDs, OTFTs

-Densification des cathodes par dépôts assistés par faisceaux d'ions

- cathodes en argent
- cathodes en aluminium: premiers résultats

Électronique organique souple

La production d'énergie dispositifs nomades domotique

Composants de base: cellules photovoltaïques

L'affichage, les écrans dispositifs ergonomiques automobile, avionique affichage grande surface

Composants de base: diodes électroluminescentes transistors

(Universal Display Corporation)

- diodes électroluminescentes (OLEDs)

- cellules photovoltaïques (OPVs)

Dépôt de l'ITO par pulvérisation ionique

-faible résistance de contact (20 Ω /),

-forte transmission optique (90 %)

-compatible avec les substrats souples (procédé basse température)

Dépôt assisté par faisceau d'ions (Ar+) de la cathode (Ag ou Al) -densifier pour limiter la diffusion de l'oxygène et de l'eau -augmentation de la durée de vie des dispositifs

ITO obtenu par pulvérisation ionique

- Paramètres à optimiser:
- -Energie des ions
- -Densité de courrant
- -Type d'ions
- -Flux d'oxygène
- -Température de substrats
- Propriétés recherchées
- -Transmittance T≥90% (400nm-800nm)
- -Résistance carrée Rc≤20Ω/
- -Dépôts à température <150°C
- -Roughness <2nm

Conditions expérimentales dans le cas de substrats de verre

-Cible (In₂O₃ 90 to 95% - SnO₂ 10 to 5%)

- -Ar⁺ ions, E = 6keV et j = 1mA/cm²
- -Vitesse de dépôts : 1nm/mn
- -Pression : 2.10⁻⁶ mbar to 6.10⁻⁵ mbar
- -Flux d'oxygène: 1 cm³/mn
- -Température de substrat: 130°C

ITO sur substrat de verre

Rugosité moyenne (mesures par AFM) R ≈ 1 nm

Cellules photovoltaïques

Cellules solaires avec le couple donneur-accepteur CuPc-C₆₀: ITO/100nm PEDOT-PSS/CuPc (30 nm) / C₆₀ (50 nm) / Al

La meilleure rugosité de l'ITO permet une diminution de l'épaisseur de PEDOT-PSS et une optimisation des épaisseurs de couches dans la cellule, avec augmentation du rendement de conversion en énergie d'un facteur 2

Mêmes conditions expérimentales pour l'ITO mais:

substrats laissé à température ambiante
 nettoyage ITO: Ethanol+ultrason (W_s passe de 4,4 eV à 4,6 eV)

□ PET/ ITO 200 nm/ TPD/ Alq3/ Cathode :

- \Box L \approx 5000 Cd/m² pour une cathode Al
- □ L ≈ 25000 Cd/m² pour une cathode Ca+AI. (seulement 400 cd/m² nécessaire pour un écran)

Transistors sur substrat souple (PET)

OFET: fonctionnement en régime d'accumulation
pentacene: semiconducteur de type p
Polarisation de grille négative
Formation du canal à l'interface pentacene/PMMA

Transistors sur substrat souple (PET)

L'énergie transférée des ions aux atomes aide à la diffusion latérale et à la nucléation

Effet sur le dépôt

-Propriétés électriques : diminution de la rugosité

⇒ injection/extraction des charges améliorée à l'interface.

-effet mécanique: compactage du dépôt et adhérance améliorée

<u>images AFM :</u> Sans assistance

Domaines poreux avec possibilité de diffusion de l'oxygène et de l'air

TAI good ar Web IBAD ; Ima 3D, scan 2 μ m, E = 250 eV, j= 4 μ A/cm², R = 1,49 nm

х: 2.0 µm

Avec assistance

Augmentation de la taille des grains

Diminution des porosités

pénétration des ions argons dans la couche organique

 pénétration des atomes de recul de la couche d'aluminium en croissance

Une couche tampon non assistée est nécessaire pour préserver l'interface cathode/couche organique

Durée de vie des OLEDs

structure de l' OLED : 1- PEDOT-PSS 80 nm 2 - α-NPB, transporteur de trous 40 nm 3 - Alq3) 60 nm, transporteur d'électron et émetteur vert 4 – cathode d'argent 100 nm Séparée en 2 zones assistées ou non par faisceau d'ions

Test à intensité constante □OLED polarisée afin d'obtenir une luminance de 100 Cd/m² □L'intensité est maintenue constante

□Le vieillissement se traduit par l'apparition de « points noirs » (oxydation du calcium→diminution de la surface électrode/couche active →augmentation de la tension pour avoir une intensité constante→claquage de l'OLED)

Durée de vie des OLEDs (mesures à l'air libre)

Nette amélioration de la durée de vie à l'air libre

Conclusions:

ITO par pulvérisation ionique

✓ transparence, résistance et rugosité contrôlée
 ✓ sur verre: amélioration des cellules solaires (η_e passe de 0.5% à 1.3 %)
 ✓ sur plastiques: OLEDs à 25000 Cd/m²

OFETs avec des caractéristiques comparables au substrat verre

Cathode Ion Beam Assisted Deposition:

✓ morphologie: augmentation de la taille des grains, porosité diminuée
 ✓ test électrique: meilleure résistance
 ✓ nette amélioration de la durée de vie des OLEDs à l'air libre

Merci de votre attention

