

Nanophotonique Silicium

Laboratoire Silicium Nanoélectronique Photonique et Structures Département de Recherche Fondamentale sur la Matière Condensée CEA/Grenoble

Nanoélectronique pourrait....devrait....devra... utiliser les photons ?!

Guide d'onde : 2.4 db/mm (IBM)

Modulateur Thermo-optic (IBM)

Electrically pumped hybrid AlGaInAs-silicon evanescent laser A.W.Fang et al., 2 October 2006 Optics Express (Intel - UCSB)

Nanophotonique Silicium

contrôler sa localisation,

pour réaliser des dispositifs ...

Un matériau de choix, le Silicium sur Isolant (SOI)

Le SOI et les Cristaux Photoniques

Cavités à grands Q

P.Velha et al, Appl. Phys. Lett., <u>89</u> (2006)
P.Velha et al, New Journ. Phys., <u>8</u> (2006)

Add drop

@ λ = 1606 nm

A.Morand, et al., Optics Express, <u>14</u> (26), 12814 (2006).

CEA/DRFMC/SiNaPS

-18.1 A - 19.1 - 10. - 10.4 - 18. - 2

12

Localisation des porteurs et émission à l'ambiante

Structure à cristaux photoniques à modes lents

- Augmentation de l'extraction de 70%
- Plus de 35% de la lumière est extraite verticalement

Spot d'excitation et de collection = 2 µm

M. Zelsmann, Appl. Phys. Lett. 83 (13), 2542 (2003)

Spectroscopie en champ proche

NOEMS

Collaborations

http://www-drfmc.cea.fr/

thomas.charvolin@cea.fr emmanuel.hadji@cea.fr

Collaboration LEOM & IEF

Du 2D au 3D : interaction 1D + 2D

Cristaux photoniques bi-dimensionnels : diagramme de bandes

